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Abstract
Parametric energy-level correlation describes the response of the energy-
level statistics to an external parameter such as the magnetic field. Using
semiclassical periodic-orbit theory for a chaotic system, we evaluate the
parametric energy-level correlation depending on the magnetic field difference.
The small-time expansion of the spectral form factor K(τ) is shown to be in
agreement with the prediction of parameter dependent random matrix theory
to all orders in τ .

PACS numbers: 05.45.Mt, 03.65.Sq

1. Introduction

More than two decades have passed since the universal energy-level statistics was conjectured
for classically chaotic systems [1]. Spectral correlations were found to coincide with the
predictions of random matrix theory (RMT). If the system is time-reversal invariant, the
energy-level correlation in the semiclassical limit is asymptotically in agreement with the
eigenvalue correlation of the Gaussian orthogonal ensemble (GOE) of random matrices. In
a magnetic field the time-reversal invariance is broken and the energy-level statistics is then
qualitatively affected. In that case the Gaussian unitary ensemble (GUE) gives a precise
prediction for the asymptotic behaviour of the energy-level correlation.

Much effort has been paid to explain the agreement with RMT in terms of the semiclassical
periodic-orbit theory [2]. A typical physical quantity, the spectral form factor K(τ), can be
written as a sum over periodic-orbit pairs. Berry calculated the leading contribution, of first
order in the time variable τ , by means of the diagonal approximation [3] which is applied to
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both of the GOE and GUE universality classes. For a system with time-reversal invariance, the
pairs of identical orbits and the pairs of mutually time-reversed orbits both contribute to the
first-order term. For a system without time-reversal invariance, we need to care only about
the pairs of identical orbits. In this way one is able to partially reproduce the RMT prediction
using periodic-orbit theory.

Berry’s work was extended to the second-order term by Sieber and Richter (SR) who
specified the family of contributing orbit pairs [4]. The possibility of including more
complicated orbit pairs by a combinatorial method was soon noticed. Heusler et al developed
the analysis to the third-order term [5] and Müller et al obtained the expansion in agreement
with the RMT result to all orders [6–8].

On the other hand, it is also conjectured that parameter-dependent random matrices
describe the transition of level statistics within and in between the universality classes [9–11].
Saito and Nagao [12] applied semiclassical periodic-orbit theory to the parametric transition
between the GOE and GUE universality classes and obtained agreement with ‘parametric’
RMT up to the third order. In this paper, we deal with the parametric transition within the
GUE symmetry class, employing the magnetic field as the parameter. Using semiclassical
periodic-orbit theory, we evaluate the small-time expansion of the spectral form factor for the
parametric correlation. The agreement with parametric RMT is established to all orders.

This paper is organized as follows. In section 2, a parametric random matrix theory is
developed and an RMT prediction for the spectral form factor is deduced. In sections 3 and
4, we employ periodic-orbit theory for a chaotic system in a magnetic field to show that a
small-time expansion of the form factor agrees with the RMT prediction. In section 5, the key
identity (a sum formula) used in section 4 is proved. In addition, a similar description of the
GOE to GUE transition is briefly given in the last section.

After submission of this paper, Kuipers and Sieber’s preprint [13] appeared on the archive.
They also studied the parametric transition within the GUE class and the calculation was
extended to treat the transition within the GOE class. Their result is in agreement with RMT
and consistent with ours.

2. Parametric random matrix theory

A parameter-dependent random matrix theory (matrix Brownian-motion model) was first
formulated by Dyson [14]. He considered an ensemble of N × N Hermitian random matrices
H which are close to an ‘unperturbed’ Hermitian matrix H(0). The conditional probability
distribution function of H is given by

P(H ; σ |H(0)) dH ∝ exp

[
−Tr{(H − e−σ H (0))2}

1 − e−2σ

]
dH (2.1)

with

dH =
N∏

j=1

dHjj

N∏
j<l

d Re Hjl d Im Hjl. (2.2)

The parametric motion of the matrix H depending on the fictitious time parameter σ is of
interest. At the initial time σ = 0,H is equated with the Hermitian matrix H(0). In the limit
σ → ∞, the probability distribution function (pdf) of H becomes that of the GUE

P(H ;∞|H(0)) dH ∝ e−TrH 2
dH, (2.3)

which is independent of H(0). Let us denote the eigenvalues of the Hermitian matrices H and
H(0) as x1, x2, . . . , xN and x

(0)
1 , x

(0)
2 , . . . , x

(0)
N , respectively. Then the pdf of the eigenvalues
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of H at σ (under the condition that xj = x
(0)
j (j = 1, 2, . . . , N) at σ = 0) can be derived as

p
(
x1, x2, . . . , xN ; σ

∣∣x(0)
1 , x

(0)
2 , . . . , x

(0)
N

) N∏
j=1

dxj

∝
N∏

j=1

e−(xj )
2/2+(x

(0)
j )2/2

N∏
j<l

xj − xl

x
(0)
j − x

(0)
l

det
[
g
(
xj , x

(0)
l

)]
j,l=1,2,...,N

N∏
j=1

dxj , (2.4)

where

g(x, y) = e−(x2+y2)/2
∞∑

j=0

Hj(x)Hj (y)√
πj !2j

e−(j+(1/2))σ (2.5)

with the Hermite polynomials

Hj(x) = (−1)j ex2 dj

dxj
e−x2

. (2.6)

In the limit σ → ∞, this pdf becomes the pdf of the GUE eigenvalues as

p
(
x1, x2, . . . , xN ;∞∣∣x(0)

1 , x
(0)
2 , . . . , x(0)

) = pGUE(x1, x2, . . . , xN), (2.7)

where

pGUE(x1, x2, . . . , xN) ∝
N∏

j=1

e−(xj )
2

N∏
j<l

|xj − xl|2, (2.8)

as expected.
Now we suppose that the initial matrix H(0) is a GUE random matrix, so that the pdf

of x
(0)
1 , x

(0)
2 , . . . , x

(0)
N is also given by (2.8). Then the transition within the GUE symmetry

class (the GUE to GUE transition) is observed. The dynamical (density–density) correlation
function which describes the GUE to GUE transition is defined as

ρd(x; σ |y) = N2 I (x; σ |y)

I0
, (2.9)

where

I
(
x1; σ

∣∣x(0)
1

) =
∫ ∞

−∞
dx2

∫ ∞

−∞
dx3 · · ·

∫ ∞

−∞
dxN

∫ ∞

−∞
dx

(0)
2

∫ ∞

−∞
dx

(0)
3 · · ·

∫ ∞

−∞
dx

(0)
N

×p
(
x1, x2, . . . , xN ; σ

∣∣x(0)
1 , x

(0)
2 , . . . , x

(0)
N

)
pGUE

(
x

(0)
1 , x

(0)
2 , . . . , x

(0)
N

)
(2.10)

and

I0 =
∫ ∞

−∞
dx

∫ ∞

−∞
dyI (x; σ |y). (2.11)

The dynamical correlation function describes correlations between the spectra of H and H0.
It is possible to evaluate the asymptotic limit N → ∞ of the dynamical correlation

function [15–17]. Introducing scaled parameters η,X, Y as

σ = η/(4π2ρ2), x =
√

2Nz + (X/ρ), y =
√

2Nz + (Y/ρ) (2.12)

(ρ =
√

2N(1 − z2)/π is the asymptotic eigenvalue density at
√

2Nz, −1 < z < 1), we find

ρd(x; σ |y)

ρ2
− 1 ∼ ρ̄(ξ ; η) ≡

∫ 1

0
du eu2η/4 cos(πuξ)

∫ ∞

1
dv e−v2η/4 cos(πvξ), (2.13)

where ξ = X − Y . The Fourier transform KRM(τ ) = ∫∞
−∞ dξ ei2πτξ ρ̄(ξ ; η) is called the form

factor. For times in the interval 0 � τ � 1 the form factor can be written as
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KRM(τ ) = 1

2

∫ 1

1−2τ

du e−λ(τ+u) = e−λ

λ
sinh(λτ), (2.14)

λ = ητ ; (2.15)

the variable λ was introduced here because it is the expansion of KRM(τ ) in powers of τ at
fixed λ which is most naturally connected with the semiclassical periodic-orbit theory; this
expansion

KRM(τ ) = τ e−λ

∞∑
j=0

(λτ)2j

(2j + 1)!
(2.16)

will be compared with a semiclassical result. For that purpose, we write the expansion into
the form

KRM(τ ) = K
diag
RM (τ ) + Koff

RM(τ ) (2.17)

with

K
(diag)

RM (τ ) = τ e−λ, K
(off)
RM (τ ) = τ e−λ

∞∑
j=1

(λτ)2j

(2j + 1)!
. (2.18)

In section 3, we evaluate the semiclassical form factor for a chaotic system and obtain the first-
order term in agreement with K

(diag)

RM (τ ). Moreover, in section 4, the semiclassical calculation
is extended to yield a result in agreement with the Laplace transform (taken for fixed η, using
(2.15))∫ ∞

0
e−qλ K

(off)
RM (τ )

τ 2

∣∣∣∣∣
τ=λ/η

dλ =
∞∑

j=1

1

(2j + 1)!

∫ ∞

0
e−(q+1)λ

(
λ

η

)2j−1

λ2j dλ

=
∞∑

j=1

1

η2j−1

(4j − 1)!

(2j + 1)!

1

(q + 1)4j
. (2.19)

We thus show the agreement up to all orders.

3. Periodic-orbit theory for a chaotic system

We consider a bounded quantum system with f degrees of freedom in a magnetic field B,
assuming that the corresponding classical dynamics is chaotic. Let us denote the energy by
E and each phase-space point by a 2f dimensional vector x = (q, p), where f dimensional
vectors q and p specify the position and momentum, respectively. In the semiclassical limit
h̄ → 0, the energy-level density ρ(E;B) can be written in the form

ρ(E;B) ∼ ρav(E) + ρosc(E;B). (3.1)

Here ρav(E) is the local average of the level density and ρosc(E;B) describes the fluctuation
around the average.

The local average of the level density is equal to the number of Planck cells inside the
energy shell

ρav(E) = �(E)

(2πh̄)f
, (3.2)

where �(E) is the volume of the energy shell. We assume that the magnetic field is sufficiently
weak such that the cyclotron radius is much larger than the system size and thus the presence
of the magnetic field does not significantly change �(E).
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On the other hand, the fluctuation part is given by a sum over the classical periodic orbits
γ as

ρosc(E;B) = 1

πh̄
Re

∑
γ

Aγ ei(Sγ (E)+θγ (B))/h̄, (3.3)

where Sγ is the classical action and Aγ is the stability amplitude (including the Maslov phase).
The phase θγ (B) is a function of the magnetic field and is defined as

θγ (B) = B

∫
γ

a(q) · dq = B

∫
gγ (t) dt, gγ (t) = a(qγ ) · dqγ

dt
, (3.4)

where a(q) is the gauge potential which generates the unit magnetic field and qγ (t) describes
a classical motion in the configuration space along the orbit γ .

In analogy with (2.13), we introduce the scaled parametric correlation function as

R(s;B,B ′) =
〈

ρ
(
E + s

2ρav(E)
;B

)
ρ
(
E − s

2ρav(E)
;B ′)

ρav(E)2

〉
− 1

∼
〈

ρosc
(
E + s

2ρav(E)
;B

)
ρosc

(
E − s

2ρav(E)
;B ′)

ρav(E)2

〉
. (3.5)

Here the angular bracket means two averages, one over the centre energy E and one over a
time interval much smaller than the Heisenberg time

TH = 2πh̄ρav(E) = �(E)

(2πh̄)f −1
. (3.6)

The form factor, namely the Fourier transform of R(s;B,B ′), is then written as

K(τ) =
∫ ∞

−∞
ds ei2πτsR(s;B,B ′) ∼

〈∫
dε eiετTH /h̄

ρosc
(
E + ε

2 ;B
)
ρosc

(
E − ε

2 ;B ′)
ρav(E)

〉
. (3.7)

Putting (3.3) into (3.7), we find that the form factor is expressed as a double sum over periodic
orbits

K(τ) ∼ 1

T 2
H

〈∑
γ,γ ′

Aγ A∗
γ ′ ei(Sγ −Sγ ′ )/h̄ ei(θγ (B)−θγ ′ (B ′))/h̄δ

(
τ − Tγ + Tγ ′

2TH

)〉
(3.8)

(an asterisk means a complex conjugate), where Tγ and Tγ ′ are the periods of the periodic orbit
γ and its partner γ ′, which ‘feel’ the magnetic fields B and B ′, respectively. We assume that
the difference between these fields is sufficiently small so that its influence on the classical
motion can be neglected; we only have to keep the resulting difference between the magnetic
phases θγ (B) − θγ ′(B ′).

Let us now denote by γT a stretch of the periodic orbit γ whose duration T is much larger
than all classical correlation times; this stretch can coincide with the whole orbit (and then T
is the orbit period). For times large compared to the classical scales mentioned, successive
changes of the velocity dqγ /dt can be regarded as independent random events [18], so that a
replacement of gγ (t) by Gaussian white noise is justified. An average of a functional F [gγT ]
over Gaussian white noise is evaluated as

〈〈F [gγT ]〉〉 =
∫
Dgγ exp

[− 1
4D

∫ T
0 dt (gγ (t))2

]
F [gγ ]∫

Dgγ exp
[− 1

4D

∫ T
0 dt (gγ (t))2

] (3.9)
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and implies a correlation 〈〈gγ (t)gγ (t ′)〉〉 = 2Dδ(t − t ′). Including this Gaussian average
(carried over the whole duration of the periodic orbits), we rewrite the form factor as

K(τ) ∼ 1

T 2
H

〈∑
γ,γ ′

Aγ A∗
γ ′ ei(Sγ −Sγ ′ )/h̄〈〈 ei(θγ (B)−θγ ′ (B ′))/h̄〉〉δ

(
τ − Tγ + Tγ ′

2TH

)〉
. (3.10)

We shall evaluate the small-τ expansion of this semiclassical form factor, restricting ourselves
to homogeneously hyperbolic systems with two degrees of freedom (f = 2).

Let us begin with adapting Berry’s diagonal approximation [3] to correlations between
two spectra pertaining to different values of the magnetic field. In this approximation, one
first considers the contributions of periodic-orbit pairs γ ′ = γ . The key ingredient is Hannay
and Ozorio de Almeida (HOdA)’s sum rule [19]

1

T 2
H

∑
γ

|Aγ |2δ
(

τ − Tγ

TH

)
= τ. (3.11)

Using this sum rule and the Gaussian average (3.9) for pairs of identical orbits (γ, γ ) we find

1

T 2
H

∑
γ

|Aγ |2δ
(

τ − Tγ

TH

)
〈〈 ei(θγ (B)−θγ (B ′))/h̄〉〉 = τ e−aT . (3.12)

Here T is the period τTH . Since the Heisenberg time TH is of the order 1/h̄ and
a = (B −B ′)2D/h̄2 the decay rate at τ fixed is proportional to (B −B ′)2/h̄3. The contribution
of pairs of identical orbits does not vanish in the limit h̄ → 0 provided the field difference is
scaled such that this parameter remains finite.

Consider now the case when the magnetic field is so weak that its influence on the orbital
motion can be neglected. Then the system is close to being time-reversal invariant, and its
periodic orbits occur in almost mutually time-reversed pairs (γ, γ̄ ); these must be taken into
account as well. However we can check that the pair (γ, γ̄ ) yields no contribution. This will
be true if both B and B ′ are quantum mechanically large in the sense

B,B ′ � O(h̄3/2), (3.13)

which does not prevent the field difference from being quantum mechanically small. Namely,
as the phase factor θγ changes sign under time reversal,

1

T 2
H

∑
γ

|Aγ |2δ
(

τ − Tγ

TH

)
〈〈 ei(θγ (B)−θγ̄ (B ′))/h̄〉〉 = τ 〈〈 ei(θγ (B)+θγ (B ′))/h̄〉〉 → 0 (3.14)

in the limit h̄ → 0. It means that pairs of time-reversed orbits do not contribute to the form
factor if (3.13) holds.

Putting the above results together, we obtain the diagonal approximation of the form
factor as

K
(diag)

PO = τ e−aT . (3.15)

This is in agreement with the first-order term of the RMT prediction (2.16), if the RMT
parameter λ is identified with aT .

4. Off-diagonal contributions

We are now in a position to calculate the off-diagonal contribution. In order to identify the
family of periodic-orbit pairs responsible for the leading off-diagonal terms, we note the fact
that long periodic orbits have close self-encounters where two or more orbit segments come
close in phase space. The duration of the relevant self-encounters are of the order of the
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Ehrenfest time TE [7]. Although TE is logarithmically divergent in the limit h̄ → 0, it is
still vanishingly small compared to the period (which is of the order of the Heisenberg time
TH ). After leaving a self-encounter, the orbit goes along a loop in phase space and comes to
a different (or back to the same) encounter. All off-diagonal terms arise from the existence of
orbits γ which are close but different from the partners γ ′ in the encounters but almost identical
to them on the loops. Within the encounters the orbits γ and γ ′ are differently connected to
the loops. Suppose that the magnetic fields B and B ′ are sufficiently strong. Then, since we
are treating a system without time-reversal invariance, γ and its partner γ ′ go in the same
direction on all loops.

Let us consider such a periodic-orbit pair α = (γ, γ ′) with L loops and V encounters.
Inside each encounter, we introduce a Poincaré section P transversal to the orbit γ in phase
space. Pairwise normalized vectors ês and êu span the section P . Here the vectors ês and êu

have directions along the stable and unstable manifolds, respectively. Each segment of the
orbit within the encounter pierces through P at one phase-space point. The displacement δx
between such points can be decomposed as δx = sês + uêu. If we fix one reference piercing
point as the origin, each of the others is specified by a coordinate pair (s, u).

Suppose that the periodic orbit γ pierces P within the rth encounter. If lr segments
of γ are contained in the encounter, there are lr piercing points so that lr − 1 coordinate
pairs relative to the reference piercing are necessary to specify them. Consequently, we need∑V

r=1(lr − 1) = L − V coordinate pairs (sj , uj ) to specify all the piercing points within the
encounters.

We denote the time elapsed on the j ’th loop by Tj and the duration of the rth encounter
by tenc,r . It follows that the total duration of the encounters is

tα ≡
V∑

r=1

lr tenc,r . (4.1)

Using these notations, we can employ ergodicity to estimate the number of encounters in a
periodic orbit with a period T = ∑L

j=1 Tj + tα as [6–8, 12]∫
du ds

∫ T −tα

0
dT1

∫ T −tα−T1

0
dT2 · · ·

∫ T −tα−T1−T2−···−TL−2

0
dTL−1Qα, (4.2)

where

Qα = N(�v)
T

L
∏V

r=1 tenc,r�L−V
(4.3)

and the integration measures are given by

du =
L−V∏
j=1

duj , ds =
L−V∏
j=1

dsj . (4.4)

The combinatorial factor N(�v) is the number of structures of orbit pairs for a given vector
�v = (v2, v3, v4, . . .), where the component vl denotes the number of the encounters with l
segments; we will occasionally write

�v = (2)v2(3)v3(4)v4 · · · . (4.5)

It should be noted that

L =
∞∑
l=2

lvl, V =
∞∑
l=2

vl. (4.6)
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Table 1. The number N(�v) of the orbit structures corresponding to the vector �v =
(2)v2 (3)v3 (4)v4 , . . . , L = ∑

l lvl , V = ∑
l vl and n = L − V + 1.

n �v L V N(�v)

3 (2)2 4 2 1
(3)1 3 1 1

5 (2)4 8 4 21
(2)2(3)1 7 3 49
(2)1(4)1 6 2 24
(3)2 6 2 12
(5)1 5 1 8

For n = L − V + 1 = 3 and 5, we tabulate N(�v)’s in table 1. The precise meaning of the orbit
structure is expounded in the next section.

We then calculate the Gaussian average (3.9) on the loops and obtain a factor
e−aT1 e−aT2 · · · e−aTL . Similarly, an encounter contributes a factor e−a(lr )

2tenc,r .
It is now straightforward to obtain the contribution to the form factor from the orbit

pair α

KPO,α(τ ) = τ

∫
du ds

∫ T −tα

0
dT1

∫ T −tα−T1

0
dT2 · · ·

∫ T −tα−T1−T2−···−TL−2

0
dTL−1QαRα ei�S/h̄,

(4.7)

where

Rα = exp(−a(T1 + T2 + · · · + TL)) exp(−a((l1)
2tenc,1 + (l2)

2tenc,2 + · · · + (lV )2tenc,V )). (4.8)

The action difference �S ≡ Sγ − Sγ ′ is estimated as �S = ∑L−V
j=1 uj sj [6–8]. This formula

contributes to the terms of order τn with n = L − V + 1.
Then we expand KPO,α(τ ) in tenc,r and extract the term where all tenc,r ’s mutually cancel.

Because of the appearances of extra factors h̄ or rapid oscillations in the limit h̄ → 0, the other
terms give no contribution [6–8]. We thus obtain the off-diagonal term of the form factor

K
(off)
PO (τ ) =

∑
�v

N(�v)
τ 2

L

(
1

TH

)L−V −1 V∏
r=1

(
−lr

∂

∂T
− (lr )

2a

)
f (T )

=
∑

�v
N(�v)

τ 2

L

(
1

TH

)L−V −1 ∞∏
l=2

(
−l

∂

∂T
− l2a

)vl

f (T ), (4.9)

where

f (T ) =
∫ T

0
dT1

∫ T −T1

0
dT2 · · ·

∫ T −T1−T2−···−TL−2

0
dTL−1 exp(−a(T1 + T2 + · · · TL)). (4.10)

Let us put λ = aT and calculate the Laplace transform of K
(off)
PO (τ )/τ 2 as∫ ∞

0
e−qλ K

(off)
PO (τ )

τ 2
dλ =

∑
�v

N(�v)
1

L

(
1

TH

)L−V −1 ∫ ∞

0
dλ e−qλ

∞∏
l=2

(
−l

∂

∂T
− l2a

)vl

f (T )

=
∑

�v
N(�v)

a

L

(
1

TH

)L−V −1 ∞∏
l=2

(−laq − l2a)vl
1

(aq + a)L

=
∞∑

n=2

1

(q + 1)n−1

(
1

aTH

)n−2 L−V +1=n∑
�v

Ñ(�v)

∞∏
l=2

(
1 + (l − 1)

1

q + 1

)vl

, (4.11)
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where Ñ(�v) = N(�v)(−1)V
∏∞

l=2 lvl /L. In the above equation, a simple graphical rule is
observed: each loop contributes a factor 1/(a(q+1)) and each encounter contributes −la(q+l).
In the next section, we shall prove a sum formula for n � 2

L−V +1=n∑
�v

Ñ(�v)

∞∏
l=2

(
1 + (l − 1)

1

q + 1

)vl

=



(2n − 3)!

n!

(
1

q + 1

)n−1

, n odd,

0, n even,

(4.12)

from which it follows that∫ ∞

0
e−qλ K

(off)
PO (τ )

τ 2
dλ =

∞∑
j=1

1

(aTH )2j−1

(4j − 1)!

(2j + 1)!

1

(q + 1)4j
. (4.13)

As aTH = (aT )(TH/T ) = λ/τ = η, this is in agreement with the RMT result (2.19).

5. A sum formula for Ñ (�v)

In this section we shall give a proof for the sum formula (see (4.12))

L−V +1=n∑
�v

Ñ(�v)

∞∏
l=2

(1 + (l − 1)x)vl =



(2n − 3)!

n!
xn−1, n odd,

0, n even
(5.1)

with n � 2. For that purpose we introduce a number NP (�v) depending on the vector

�v = (1)v1(2)v2(3)v3(4)v4 · · · (5.2)

and set L = ∑∞
l=1 lvl and V = ∑∞

l=1 vl . Let us denote an ‘encounter’ permutation of the
numbers 1, 2, . . . , L as

Penc =
(

1 2 3 · · · L

Penc(1) Penc(2) Penc(3) · · · Penc(L)

)
(5.3)

and define a ‘loop’ permutation

Ploop =
(

1 2 3 · · · L − 1 L

2 3 4 · · · L 1

)
. (5.4)

We define NP (�v) as the number of permutations Penc which satisfy the following two
conditions.

(A) The permutation Penc has vl cycles of length l.
(B) The product PloopPenc is a permutation with a single cycle.

Then it follows that

N((2)v2(3)v3(4)v4 · · ·) = NP ((1)0(2)v2(3)v3(4)v4 · · ·). (5.5)

In order to explain the reason, let us suppose the following situation. The encounters include∑V
r=1 lr = L orbit segments in total, so that there are L ‘entrances’ where the orbits come in

and L ‘exits’ where the orbits go out. A periodic orbit γ comes in an encounter at the first
‘entrance’ and goes out at the first ‘exit’. Then it comes to the second ‘entrance’ and goes out
at the second ‘exit’. It continues to follow the connection pattern

j th ‘entrance’ → j th exit’ → (j + 1)th ‘entrance’

and finally goes out at the Lth ‘exit’ and then comes back to the first ‘entrance’ again. On the
other hand, the partner orbit γ ′ comes in an encounter at the first ‘entrance’ and goes out at
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Penc(1)th ‘exit’. Then it must go to the PloopPenc(1)th ‘entrance’, as the partners go along the
same loop. It continues to follow the pattern

j th ‘entrance’ → Penc(j)th ‘exit’ → PloopPenc(j)th ‘entrance’

In this manner, if a permutation Penc is given, the structure of a periodic orbit γ ′ is specified.
The j th ‘entrance’ and the lth ‘exit’ belong to the same encounter, if and only if j and l

are contained in the same cycle of the permutation Penc. Hence the condition (A) is required.
The orbit γ ′ finally comes to (PloopPenc)

L(1)th ‘entrance’. As γ ′ is a connected periodic orbit,
it must be the first return to the first ‘entrance’. This is guaranteed by the condition (B).

A combinatorial argument [6–8] yields a recursion relation for

ÑP (�v) = NP (�v)(−1)V
∞∏
l=1

lvl

/
L (5.6)

as

vlÑP (�v) +
∑
k�1

v
[k,l→k+l−1]
k+l−1 kÑP (�v[k,l→k+l−1])

+
∑

1�m�l−2

(vl−m−1 + 1)v[l→m,l−m−1]
m ÑP (�v[l→m,l−m−1]) = 0. (5.7)

Here we used a notation

�v[α1,...,αν→β1,...,βν′ ], (5.8)

which is the vector obtained from �v when we decrease each of vα1 , vα2 , . . . , vαν
by one and

increase each of vβ1 , vβ2 , . . . , vβν′ by one. It should be noted that ÑP (�v) is zero if any of the
components of �v is negative.

In the special case l = 2, we obtain a simplified recursion formula for Ñ(�v):

v2Ñ(�v) +
∑
k�2

v
[k,2→k+1]
k+1 kÑ(�v[k,2→k+1]) = 0. (5.9)

Let us introduce a variable x and define

Ñ(�v, x) = Ñ(�v)

∞∏
l=2

(1 + (l − 1)x)vl . (5.10)

Then the recursion formula (5.9) reads

v2

1 + x
Ñ(�v, x) +

∑
k�2

k(1 + (k − 1)x)

1 + kx
v

[k,2→k+1]
k+1 Ñ(�v[k,2→k+1], x) = 0. (5.11)

Summing this over �v with fixed L − V + 1 = n, we find

L−V +1=n∑
�v


 v2

1 + x
Ñ(�v, x) +

∑
k�2

k(1 + (k − 1)x)

1 + kx
v

[k,2→k+1]
k+1 Ñ(�v[k,2→k+1], x)


 = 0. (5.12)

Here the sum over �v can be replaced by the sum over �v′ ≡ �v[k,2→k+1], so that

L−V +1=n∑
�v

v
[k,2→k+1]
k+1 Ñ(�v[k,2→k+1], x) =

L−V +1=n∑
�v′

v′
k+1Ñ(�v′, x). (5.13)
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Dropping the primes, we can thus write

L−V +1=n∑
�v


 v2

1 + x
+
∑
k�2

k(1 + (k − 1)x)

1 + kx
vk+1


 Ñ(�v, x)

=
L−V +1=n∑

�v


∑

k�2

vk(k − 1) −
∑
k�2

vk(k − 1)x

1 + (k − 1)x


 Ñ(�v, x)

=
(

n − 1 − x
∂

∂x

) L−V +1=n∑
�v

Ñ(�v, x) = 0, (5.14)

which means

L−V +1=n∑
�v

Ñ(�v, x) = Cnx
n−1, Cn =

L−V +1=n∑
�v

Ñ(�v, 1). (5.15)

Thus the sum formula has been proved up to a constant Cn.
Let us then calculate Cn. First note that, according to (5.10), each Ñ(�v, x) contains only

terms of the order xV and lower orders. Due to the inequality

n − 1 − V = L − 2V =
∞∑
l=2

vl(l − 2) � 0, (5.16)

this means that the largest order possible for a given n = L−V +1 is xn−1. This order is reached
only for �v with v3 = v4 = · · · = 0, for which the equality holds in (5.16). Accordingly, we
find

L−V +1=n∑
�v

Ñ(�v, x) =
L−V +1=n∑

�v
Ñ(�v)xV

∞∏
l=2

(
l − 1 +

1

x

)vl

= Ñ((2)n−1)xn−1 + lower order terms in x. (5.17)

Comparison with (5.14) now yields

Cn = Ñ((2)n−1); (5.18)

all terms of lower orders in x must mutually cancel. In order to evaluate Ñ((2)n−1), we can
utilize a closed expression for ÑP (�v) (with vj � 0 for j � � and vj = 0 for j > �)

ÑP (�v) = (−1)V

L(L + 1)

v1∑
h1=0

v2∑
h2=0

· · ·
v�∑

h�=0

(−1)
∑�

j=1(j+1)hj

(∑�
j=1 jhj

)
!
(∑�

j=1 j (vj − hj )
)
!∏�

j=1[hj !(vj − hj )!]
,

(5.19)

which was derived by Jürgen Müller [20]. Using the identity∫ ∞

0
e−ssj ds = j !, (5.20)

we can rewrite Jürgen Müller’s formula as

ÑP (�v) = (−1)V

L(L + 1)

∫ ∞

0
dx

∫ ∞

0
dy e−x e−y

∞∏
j=1

(yj − (−x)j )vj

vj !
, (5.21)
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so that

Ñ((2)n−1) = ÑP ((2)n−1) = (−1)n−1

2(n − 1)(2n − 1)(n − 1)!

∫ ∞

0
dx

∫ ∞

0
dy e−x e−y(y2 − x2)n−1

= (−1)n−1

4(n − 1)(2n − 1)(n − 1)!

∫ ∞

0
ds

∫ s

−s

dt e−ssn−1tn−1

=



(2n − 3)!

n!
, n odd,

0, n even
(5.22)

(s = x + y, t = x − y), which establishes the desired result (5.1).
It is easy to check that Jürgen Müller’s formula holds for �v’s with small L − V (for

example, ÑP ((1)1) = −1). Therefore, in order to prove it in general, it is sufficient to verify
that it fulfils the recursion relation (5.7). For that purpose, we first define an ‘average’ 〈· · ·〉�v
of a function f (x, y) as

〈f (x, y)〉�v =
∫ ∞

0
dx

∫ ∞

0
dy e−x e−yf (x, y)

∞∏
j=1

(yj − (−x)j )vj . (5.23)

Since ÑP (�v) = 0 if any of vj is negative, (5.7) evidently holds if vl = 0. Hence we focus on
the case vl � 1. Then partial integrations yield a relation

〈1〉�v − l

〈
yl−1 + (−x)l−1

yl − (−x)l

〉
�v

= 〈1〉�v −
〈

∂

∂y

(
yl

yl − (−x)l

)
− ∂

∂x

(
(−x)l

yl − (−x)l

)

− l
y2l−1 − (−x)2l−1

(yl − (−x)l)2

〉
�v

=
∫ ∞

0
dx

∫ ∞

0
dy e−x e−y

×
[

yl

yl − (−x)l

∂

∂y
− (−x)l

yl − (−x)l

∂

∂x
− l

y2l−1 − (−x)2l−1

(yl − (−x)l)2

] ∞∏
j=1

(yj − (−x)j )vj

(5.24)

for l = 1, 2, . . . , L. Using this relation and the identity[
yl

yl − (−x)l

∂

∂y
− (−x)l

yl − (−x)l

∂

∂x

] ∞∏
j=1

(yj − (−x)j )vj

=
∑
k�1

kvk

yk+l−1 − (−x)k+l−1

(yl − (−x)l)(yk − (−x)k)

∞∏
j=1

(yj − (−x)j )vj , (5.25)

we can readily derive

〈1〉�v − l

〈
yl−1 + (−x)l−1

yl − (−x)l

〉
�v

=
∑
k�1

k

〈
(vk − δkl)

yk+l−1 − (−x)k+l−1

(yl − (−x)l)(yk − (−x)k)

〉
�v
. (5.26)

The following identity∫ ∞

0
dx

∫ ∞

0
dy e−ωx e−ωy 1

x + y

∞∏
j=1

(yj − (−x)j )vj

= ω−L−1
∫ ∞

0
dx

∫ ∞

0
dy e−x e−y 1

x + y

∞∏
j=1

(yj − (−x)j )vj (5.27)
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can be proved by a transformation of the variables ωx → x, ωy → y. Differentiating the
both sides of this identity with respect to ω and then putting ω = 1, we obtain a relation

1

L + 1
〈1〉�v =

〈
1

x + y

〉
�v
, (5.28)

from which it follows that

1

L + 1
〈1〉�v =

〈
1

yl − (−x)l

{
yl−1 + (−x)l−1 − xyl−1 + y(−x)l−1

x + y

}〉
�v
. (5.29)

Then, utilizing

xyl−1 + y(−x)l−1

x + y
= −1

2

∑
1�m�l−2

[(−x)myl−m−1 + (−x)l−m−1ym], (5.30)

we find

− 2

L + 1
〈1〉�v + l

〈
yl−1 + (−x)l−1

yl − (−x)l

〉
�v

=
∑

1�m�l−2

〈
(ym − (−x)m)(yl−m−1 − (−x)l−m−1)

yl − (−x)l

〉
�v
.

(5.31)

Adding both sides of (5.26) and (5.31), we arrive at

L − 1

L + 1
〈1〉�v =

∑
k�1

k

〈
(vk − δkl)

yk+l−1 − (−x)k+l−1

(yl − (−x)l)(yk − (−x)k)

〉
�v

+
∑

1�m�l−2

〈
(ym − (−x)m)(yl−m−1 − (−x)l−m−1)

yl − (−x)l

〉
�v
, (5.32)

which gives the desired recursion relation (5.7) with Jürgen Müller’s formula (5.21) substituted.

6. The GOE to GUE transition

The equal-parameter correlation function R(s;B,B) describes the transition between the GOE
and GUE universality classes as the magnetic field B increases from zero [12, 21, 22]. In this
section, we shall reproduce Saito and Nagao’s semiclassical calculation [12] of the form factor
(the Fourier transform of R(s;B,B)) and further derive a sum formula analogous to (5.1) as
a conjecture.

The RMT prediction of the form factor in this case is derived from Pandey and Mehta’s
two-matrix model [23]. For small τ (0 � τ � 1), it can be written as

KRM(τ ) = τ +
1

2

∫ 1

1−2τ

dk
k

k + 2τ
e−µ(k+τ)

= τ + e−µτ + e−µ

(
sinh τµ

µ
− τ

)
− 2τ 2 eµ(τ−1)

∫ 1

0

e−2τµy

1 + 2τy
dy. (6.1)

In the GOE limit the parameter µ is zero and in the GUE limit it goes to infinity.
The semiclassical argument is similar to that in sections 3 and 4. The difference is that

we have to take account of the mutually time-reversed pairs of loops and segments of classical
orbits. Following a similar argument as in section 3, we obtain a diagonal approximation for
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the form factor

K
(diag)

PO (τ ) = τ + τ e−bT , (6.2)

b = 4B2D/h̄2. (6.3)

The RMT parameter µ should be equated with bT in reference to the semiclassical result.
In order to extend the calculation to the off-diagonal terms, we need to introduce integers

nenc,r and M characterizing the structure of the orbit pairs as follows. Let us fix an arbitrary
direction (+) in which the orbits pass through the rth encounter and call the opposite direction
(−). Suppose that the orbit γ passes through the encounter #(+)(γ ) and #(−)(γ ) times in (+)

and (−) directions, respectively. We then define the number nenc,r as

nenc,r = 1
2 |{#(+)(γ ) − #(−)(γ )} − {#(+)(γ ′) − #(−)(γ ′)}|. (6.4)

Moreover we define M as the number of the pairs of mutually time-reversed loops.
As before, for a general orbit pair α with L loops and V encounters, the number of

encounters in one periodic orbit of a period T is evaluated as∫
du ds

∫ T −tα

0
dT1

∫ T −tα−T1

0
dT2 · · ·

∫ T −tα−T1−T2−···−TL−2

0
dTL−1Qα, (6.5)

where

Qα = N(v,M)
T

L
∏V

r=1 tenc,r�L−V
. (6.6)

Here the combinatorial factor N(v,M) depends on a matrix v and M. The component vlm of
the matrix v is the number of the encounters with lr = l and nenc,r = m. One can write

v = (2, 0)v20(2, 1)v21(2, 2)v22 · · · . (6.7)

Following the argument in [6–8], we can identify N(v,M) with the number of generalized
permutations satisfying suitable conditions.

Let us consider the effect of the gauge potential. The Gaussian average (3.9) on the loops
gives a factor e−bT1 e−bT2 · · · e−bTM , while from an encounter it yields e−b(nenc,r )

2tenc,r . Thus we
conclude that the total contribution to the form factor from the orbit pair α is

KPO,α(τ ) = τ

∫
du ds

∫ T −tα

0
dT1

∫ T −tα−T1

0
dT2 · · ·

∫ T −tα−T1−T2−···−TL−2

0
dTL−1QαRα ei�S/h̄

(6.8)

with

Rα = exp(−b(T1 + T2 + · · · + TM)) exp(−b((nenc,1)
2tenc,1

+ (nenc,2)
2tenc,2 + · · · + (nenc,V )2tenc,V )). (6.9)

This contributes to the terms of order τn with n = L−V +1. As before we expand KPO,α(τ ) in
tenc,r and extract the term where all tenc,r ’s mutually cancel. Then we find that the off-diagonal
contribution to the form factor is

K
(off)
PO (τ ) =

∑
v

L∑
M=0

N(v,M)
τ 2

L

(
1

TH

)L−V −1 ∞∏
l=2

∞∏
m=0

(
−l

∂

∂T
− m2b

)vlm

f (T ,M), (6.10)

where

f (T ,M) =
∫ T

0
dT1

∫ T −T1

0
dT2 · · ·

∫ T −T1−T2−···−TL−2

0
dTL−1 exp(−b(T1 + T2 + · · · TM)).

(6.11)
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Table 2. The number N(v, M) of the orbit structures corresponding to the matrix v =
(2, 0)v20 (2, 1)v21 (2, 2)v22 , . . . , L = ∑

l

∑
m lvlm, V = ∑

l

∑
m vlm, n = L − V + 1 and the

number M of the pairs of mutually time-reversed loops. By machine-assisted counting the table is
extended to higher values of n.

n v L V M N(v,M)

2 (2, 0)1 2 1 1 2
3 (2, 0)2 4 2 2 4

(2, 0)2 4 2 0 1
(2, 1)2 4 2 2 4
(2, 2)2 4 2 4 1
(3, 0)1 3 1 2 3
(3, 0)1 3 1 0 1
(3, 1)1 3 1 1 3
(3, 3)1 3 1 3 1

4 (2, 0)3 6 3 1 6
(2, 0)3 6 3 3 10
(2, 0)2(2, 1)1 6 3 2 12
(2, 0)1(2, 1)2 6 3 3 36
(2, 0)1(2, 1)1(2, 2)1 6 3 4 12
(2, 2)2(2, 0)1 6 3 5 6
(2, 0)1(3, 0)1 5 2 1 15
(2, 0)1(3, 0)1 5 2 3 15
(2, 0)1(3, 1)1 5 2 2 25
(2, 0)1(3, 2)1 5 2 3 10
(2, 0)1(3, 3)1 5 2 4 5
(2, 1)1(3, 0)1 5 2 2 20
(2, 1)1(3, 1)1 5 2 3 20
(2, 2)1(3, 1)1 5 2 4 10
(4, 0)1 4 1 1 12
(4, 0)1 4 1 3 4
(4, 1)1 4 1 2 16
(4, 2)1 4 1 3 8

If M = 0, the direction of motion along all loops and hence in all encounters does not change
in the partner orbit; consequently nenc,r = 0 for all encounters. The corresponding structures
also exist in the case without time-reversal invariance, so that

N(v, 0) =
{
N((2)v20(3)v30 · · ·), if all vnj with j �= 0 vanish,

0, otherwise.
(6.12)

Here N(�v) is the number of structures introduced in sections 4 and 5. Time reversal of each
such partner orbit produces another partner with M = L; therefore

N(v, L) =
{
N((2)v22(3)v33 · · ·), if all vnj with j �= n vanish,

0, otherwise.
(6.13)

Note that the structures with M = 0, L may exist only for odd n = L − V + 1; see [7].
Noting the above relations for the combinatorial factors, we can evaluate the contribution

of the structures with M = 0, L in the same way as in section 4, namely by Laplace
transforming the corresponding summands in K

(off)
PO (τ )/τ 2, using the sum rule (5.1) for

N(�v) and transforming back to the time representation. The contribution of the structures
with M = 0 turns out to be zero whereas the structures with M = L reproduce the third
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summand in the last line of (6.1). On the other hand, making the Laplace transform of the
part of K

(off)
PO (τ )/τ 2 with 1 � M � L − 1 and equating the result to the corresponding RMT

prediction deduced from the integral in the last line of (6.1), we arrive at a conjecture
L−V +1=n∑

v

L−1∑
M=1

N(v,M)

L

(−1)V

(1 + x)M

∞∏
l=2

∞∏
m=0

(l + m2x)vlm

= 1

(1 + x)n−1

n−1∑
p=1

( x

1 + x

)n−p−1
(2n − p − 3)!

n−1∑
j=p

(−1)j 2j

j (n − j − 1)!(j − p)!
.

(6.14)

In the cases n = 2 and 3, the conjecture (6.14) was substantially proved in [12]; by machine-
assisted counting it was verified up to n = 7. For small values of n up to 4, the relevant
N(v,M)’s are tabulated in table 2. Moreover, putting x = 0, we obtain

L−V +1=n∑
v

L−1∑
M=1

N(v,M)

L
(−1)V

∞∏
l=2

lvl = (−2)n−1 (n − 2)!

n − 1
(6.15)

(
vl = ∑∞

m=0 vlm

)
, which is relevant to the GOE form factor. This special case was proved in

[6–8]. The full proof of (6.14) is an interesting open problem.

7. Summary

We studied correlations of quantum energy spectra for chaotic motion of a charged particle in
a magnetic field. The magnetic field was allowed to vary throughout the transition from the
orthogonal to the unitary symmetry class. In particular, we investigated parametric correlations
of two spectra from the unitary symmetry class pertaining to different values of the magnetic
field as well as equal-parameter correlations within a single spectrum in the orthogonal/unitary
crossover. Both cases were treated in the semiclassical limit where two-point correlators of
the level density (as well as their Fourier transforms, the spectral form factors) are expressed
as sums over pairs of classical periodic orbits. We extracted small-time expansions for the
form factors. Our semiclassical small-time expansion for parametric correlations recovers
predictions of random matrix theory. The equivalence with RMT rests on a new sum rule
for the number of ‘structures’of pairs of periodic orbits. Agreement with RMT was also
demonstrated for equal-parameter correlations in the orthogonal/unitary transition, up to
seventh order of the small-time expansion of the form factor. Assuming agreement to all
orders, we were led to conjecture another sum rule (6.14).
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